The mammalian gut has coevolved over millions of years with a vast consortium of microbes, which were physically, intimately and densely associated with our body. From birth, this population is in continuous and intimate contact with intestinal tissues. Recent results indicate that indigenous bacteria play a crucial inductive role in gut development during early postnatal life. These findings have revealed that the mammalian intestine is poised for interaction with its prokaryotic partners, which are essential for its normal development. During their coevolution, the bacterial microbiota has established multiple mechanisms to influence the eukaryotic host, generally in a beneficial fashion, and maintain their stable niche. The prokaryotic genomes of the human microbiota encode a spectrum of metabolic capabilities beyond that of the host genome, making the microbiota an integral component of human physiology. Gaining a fuller understanding of both partners in the normal gutmicrobiota interaction may shed light on how the relationship can go awry and contribute to a spectrum of immune, inflammatory, and metabolic disorders and may reveal mechanisms by which this relationship could be manipulated toward therapeutic ends. This review provides a brief overview of this exciting, emerging field.
Author(s): Dipendra Raj Pandeya,, Roshan D?Souza, Md. Mashiar Rahman, Shahina Akhter, Hyeon-Jin Kim, Seong-Tshoo Hong
Abstract |
Full-Text |
PDF
Share this