Present study investigates the protective effect of Secologanin (SLG) on neuronal cell damage induced by epilepsy. Epilepsy was induced by pilocarpine (350 mg/kg, Ip) and scopolamine (1 mg/kg, Subcutaneous) injection at an interval of 30 min. SLG was administered at a dose of 10 mg/kg and 20 mg/kg of body weight for the period of 7 day after the injection of pilocarpine. Effect of SLG on convulsions was monitored for 30 min at the end of protocol. Whereas, its neuroprotective effect was assessed by caspase activity, neurochemicals concentration (Dopamine and 5 HT) and oxidative stress parameters like Superoxide Dismutase (SOD); Catalase (CAT); Lipid Peroxidation (LPO) in brain tissues. Neuronal cell damage was assessed by histopathological study using NeuN staining. Result suggested that SLG treatment significantly increases (p<0.01) the latency of myoclonic jerking and absent of latency and duration generalized tonic seizer compared to negative control group. There was significant decrease (p<0.05) in the caspase activity in SLG treated group compared to negative control group. Treatment with SLG increases the neurochemical (Dopamine and 5 HT) level and ameliorates the oxidative stress parameters compared to negative control group. However histopathology study suggested that treatment with SLG improves the quantity of normal cell and decreased the injured neuronal cell. Present investigation concludes that SLG possess neuroprotective effect in epilepsy induced rat model and also postulates its possible mechanism, by managing the neurochemical balance and amelioration of oxidative stress.
Author(s): Ye-Fen Lu, Hui-Fen Huang, Jian-Jun Chen, Ting-Ting Zeng, Wei-Jing Chen, Lin-Lin Yu, Jie Rao, Wei-Yan Sun, Xiu-Mei Liu, Wei-wen Qiu
Abstract |
Full-Text |
PDF
Share this