Retinal Pigment Epithelial (RPE) cells play important roles in progression of human ophthalmic diseases. Evidences have showed that Resveratrol (RV) presents benefits for the treatment of ophthalmic diseases. In this study, we investigated the potential molecular mechanism mediated by RV in RPE cells. Transforming Growth Factor beta1 (TGFβ1) and Epithelial-Mesenchymal Transition (EMT) signal pathway was analysed in RPE cells determined by Western blot analysis and RT-PCR. Results demonstrated that RV treatment (10 mg/ml) significantly inhibited proliferation and migration of RPE cells. We showed that RV treatment inhibited TGFβ1 and EMT markers Fibronectin (FIB), alphasmooth muscle actin (α-SMA), and Vimentin (VIM) expression in RPE cells. Inhibition of endogenous TGFβ1 decreased FIB, α-SMA and VIM expression levels in RPE cells as well as inhibited proliferation and migration of RPE cells. TGFβ1 overexpression stimulated EMT markers FSP1, E-cadherin and Snail expression levels in RPE cells. Overexpression of TGFβ1 cancelled RV-down-regulated FIB, α- SMA and VIM expression in RPE cells. Overexpression of TGFβ1 also abolished RV-suppressed proliferation and migration of RPE cells. In conclusion, this study describes the RV-regulated molecular mechanism in RPE cells through TGFβ1-induced EMT signaling and suggests that RV would be a potential therapeutic agent for the prevention or treatment of Proliferative Vitreoretinopathy (PRV).
Author(s): Li Junling, Li Xiaorong, Xiao Bowen, Wu Jianguo
Abstract |
Full-Text |
PDF
Share this